Precision Matrix Estimation by Inverse Principal Orthogonal Decomposition
نویسندگان
چکیده
منابع مشابه
Large Covariance Estimation by Thresholding Principal Orthogonal Complements.
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (PO...
متن کاملEmpirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation
This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system. In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...
متن کاملAerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition
The application of proper orthogonal decomposition for incomplete (gappy) data for compressible external aerodynamic problems has been demonstrated successfully in this paper for the first time. Using this approach, it is possible to construct entire aerodynamic flowfields from the knowledge of computed aerodynamic flow data or measured flow data specified on the aerodynamic surface, thereby de...
متن کاملPrincipal Component Analysis & Singular Value Decomposition in Matrix Dimensionality Reduction & Covariance/Correlation Estimation
Introduction: Measuring and managing risk has been of greater concern to investors and fund managers especially after the financial crisis 2007. Many mathematical and statistical methods have been developed and improved to aim at providing a more accurate and better control over risk and efficient asset allocation. While financial professionals refer to risk as standard deviation of securities,...
متن کاملSparse Precision Matrix Estimation with Calibration
We propose a semiparametric method for estimating sparse precision matrix of high dimensional elliptical distribution. The proposed method calibrates regularizations when estimating each column of the precision matrix. Thus it not only is asymptotically tuning free, but also achieves an improved finite sample performance. Theoretically, we prove that the proposed method achieves the parametric ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Research
سال: 2020
ISSN: 1674-5647,2707-8523
DOI: 10.4208/cmr.2020-0001